
36 The Delphi Magazine Issue 52

ADO Transaction Processing
by Guy Smith-Ferrier

In my previous article on ADO
(Issue 49, September 1999) I gave

an overview of the components
and features of the ActiveX Data
Objects support which was added
to Delphi 5. In this article I want to
examine one specific feature: ADO
transaction processing. Most data-
base programmers from almost
any background will be familiar
with the essential idea and
mechanics of transaction process-
ing but with the switch of
middleware from the BDE to ADO
the deck is slightly reshuffled. This
article is for BDE programmers
learning ADO.

Getting Started
I mentioned in the last article that
Delphi 5’s TADOConnection compo-
nent is analogous to the BDE’s
TDatabase component. However, I
also mentioned that the designers
of the ADO components chose to
maintain compatibility with ADO
rather than with Delphi’s BDE com-
ponents, so the names of proper-
ties and methods of TADOConnection
are not compatible with those of
TDatabase. With that difference in
mind, the translation is simple.
Table 1 shows TADOConnection’s
transaction processing properties
and methods and their BDE
counterparts.

The methods are used in the
same way as for TDatabase. Listing 1
shows a TADOConnection compo-
nent being used to ensure that

both sides of a transfer of money
from one account to another
account either succeed or both
sides fail.

Determining Support
However, this is where the differ-
ences start. ADO takes a different
attitude to databases than the BDE.
Both pieces of middleware offer
portability from one database
engine to another (hence the BDE
is based on IDAPI, which stands for
Independent Database API). As a
result, portability is only achiev-
able by programming down to the
lowest common denominator.
Sometimes the lowest common
denominator is so feature-light
that this is a ‘challenge’. However,
the BDE attempts to offer better
portability by raising the level of
the lowest common denominator
to make it more palatable and to
make portability easier. ADO does
not take this approach. Instead it
offers the features that the under-
lying database offers and does not
add back missing features.

The immediate consequence of
this is that when using ADO with

the Paradox ODBC driver any
transaction processing method
will give an exception: ‘The opera-
tion requested by the application is
not supported by the provider’. So it
is up to the programmer to first
determine the transaction pro-
cessing facilities of the OLE DB
Provider and, if relevant, the ODBC
driver in use. You can do this using
the Transaction DDL dynamic prop-
erty shown in Listing 2.

Table 2 shows the ADO con-
stants which determine the kind of
transaction processing supported
by the provider. The difference
between the constants simply
determines how DDL (Data Defini-
tion Language: CREATE, ALTER, DROP)
used within a transaction is
treated.

Nested Transactions
ADO supports nested transac-
tions. This is a simple concept of
allowing one transaction to be
‘nested’ inside another. The inner
transaction can be committed or
rolled back independently of the

ADO Description BDE Equivalent

TADOConnection.BeginTrans Begins a transaction TDatabase.StartTransaction

TADOConnection.CommitTrans Commits a transaction TDatabase.Commit

TADOConnection.RollbackTrans Rolls back a transaction TDatabase.Rollback

TADOConnection.IsolationLevel Transaction isolation level TDatabase.TransIsolation

TADOConnection.Properties[‘Transaction DDL’] Retrieves transaction support level N/A

TADOConnection.InTransaction Is a transaction in progress ? TDatabase.InTransaction

TADOConnection.Attributes Should a transaction be started
after a commit or rollback ?

N/A

➤ Table 1

ADOConnection1.BeginTrans;
try
ADOCompanyAccounts.Edit;
ADOCompanyAccounts.FieldByName('Balance').AsFloat:=
ADOCompanyAccounts.FieldByName('Balance').AsFloat + 100;
ADOCompanyAccounts.Post;
ADOCustomerAccounts.Edit;
ADOCustomerAccounts.FieldByName('Balance').AsFloat:=
ADOCustomerAccounts.FieldByName('Balance').AsFloat - 100;
ADOCustomerAccounts.Post;
ADOConnection1.CommitTrans;

except
ADOConnection1.RollbackTrans;

end;

➤ Listing 1



December 1999 The Delphi Magazine 37

outer transaction. Providers which
support nested transactions typi-
cally place no limit on the number
of levels of nesting, or place a limit
which is beyond all practical need.
Of course, this brings up the point
that whereas ADO supports the
concept of nested transactions,
not all providers support it. For
example, ODBC does not support
nested transactions. SQL Server 7
does support nested transactions
but SQL Server 6.5 only supports
what is sometimes referred to as
‘fake nesting’. Fake nesting is
achieved by allowing the program-
mer to create nested transactions
but the data is not actually commit-
ted until the outermost transaction
is committed. Rather surprisingly I
have not found any way of deter-
mining whether nested transac-
tions are supported other than by
trying a nested transaction in a
try..except block and observing
whether it fails or not.

One of TADOConnection’s proper-
ties which has a bearing on nested
transactions is called Attributes.
This is a set of TXactAttributes enu-
merated types. TXactAttributes
has only two possible values:
xaCommitRetaining and xaAbort-
Retaining. The first of these
instructs ADO to start a new
transaction as soon as the old
transaction has been completed,
and xaAbortRetaining instructs
ADO to start a new transaction as
soon as the old transaction has
been rolled back. By default the set
is empty but it can easily be set
programmatically:

ADOConnection1.Attributes:=
[xaCommitRetaining,
xaAbortRetaining];

Incidentally, remember that I men-
tioned the ADO datasets where
ADO-like instead of BDE-like? Well,
when it comes to a choice between
being ADO-like instead of Delphi-
like then the datasets are
Delphi-like. The Attributes prop-
erty is a good example. Delphi uses
enumerated types and sets of enu-
merated types and these make
reading and writing this code very
easy. If we had simply used the
ADO type library directly as I

if ADOConnection1.Properties['Transaction DDL'].Value > DBPROPVAL_TC_NONE then
Caption:='Transaction processing is supported';

Transaction DDL Constant Value Description

DBPROPVAL_TC_NONE 0 Transactions are not supported

DBPROPVAL_TC_DML 1 Transactions can contain DML.
DDL causes an exception

DBPROPVAL_TC_DDL_COMMIT 2 Transactions can contain DML.
DDL causes transactions to
commit

DBPROPVAL_TC_DDL_IGNORE 4 Transactions can contain DML.
DDL is ignored

DBPROPVAL_TC_ALL 8 Transactions can contain DML
and DDL

➤ Table 2

➤ Listing 2
showed in my article on using ADO
in Delphi 4 (Issue 46) then the code
would have involved using bitwise
operators with the ADO constants:

Connection.Attributes :=
adXactCommitRetaining or
adXactAbortRetaining;

This solution is less appealing. But
back to nested transactions. The
reason why the Attributes prop-
erty has a bearing on nested trans-
actions is because if Attributes
includes either xaCommitRetaining
or xaAbortRetaining and a nested
(or ‘inner’) transaction is started
then the outermost transaction
can never be committed or rolled
back. The reason for this is obvi-
ous when you think it through in
steps.

First, the outermost transaction
starts. Then a nested (or ‘inner’)
transaction starts. The inner trans-
action is either committed or
rolled back. Then a new transac-
tion is automatically started be-
cause of the setting in the
Attributes property.

As a result it is not possible to
get back to the outermost transac-
tion because a new transaction is
always being started.

Cursor Locations,
Cursor Types And Lock Types
Cursor locations, cursor types and
lock types are all interwoven prop-
erties. The setting of one directly
affects the setting of the others. As

such all three must be covered
together.

Connections and Recordsets both
have a CursorLocation property
which determines whether the
cursor is a ‘client-side’ cursor
(clUseClient) or a ‘server-side’
cursor (clUseServer). Client-side
cursors are managed by the
Microsoft Client Cursor Library
and offer a level of flexibility and
features similar to those of
TClientDataSet. For example,
client-side cursors can be sorted
and re-sorted without re-querying
the data, and client-side cursors
are always bi-directional. Server-
side cursors are managed by the
OLE DB provider and are typically
an extension of the cursor handle
of the underlying database. Server-
side cursors can offer better per-
formance and are necessary for
large result sets (where the client
machine has insufficient disk
space to cache the complete result
set) but not all providers offer
bi-directional cursors.

Why am I mentioning all of this?
Well, the cursor location has a
direct bearing on the kinds of
cursor types which a recordset
can use. Table 3 shows the cursor
types supported by ADO.

As you can see from the table,
the cursor type affects whether
the result set is bi-directional,
whether records added by other
users are visible, and whether



38 The Delphi Magazine Issue 52

ADO
Constant Value Forwards / Backwards

Records Added By
Others Are Visible

Records Deleted
By Others

ctUnspecified N/A N/A N/A

ctOpenForwardOnly 0 Forwards only ? ?

ctKeyset 1 Both No Inaccessible

ctDynamic 2 Both Yes Yes

ctStatic 3 Both No No

➤ Table 3

records deleted by other users are
deleted in your own record set. For
‘keyset’ cursors (ie, CursorType :=
ctKeySet) you can specify whether
your own result set should see
your own inserts and deletions
using the Remove Deleted Records
and Own Inserts Visible dynamic
properties.

The CursorLocationproperty has
a bearing on CursorType because
the OLE DB provider in use will
automatically change the cursor
type from one which it doesn’t sup-
port to one which it does. For all
OLE DB providers if you specify a
client-side cursor then the cursor
type will always be changed to
ctStatic. For server-side cursors
the amending of the cursor type
varies from OLE DB provider to
OLE DB provider. For example, the
SQL Server OLE DB provider often
changes keyset and static cursors
to dynamic, the Jet OLE DB pro-
vider changes most cursors to
keyset, the Oracle OLE DB provider
changes all cursors to forward
only, the ODBC OLE DB provider
changes cursors depending on the
ODBC driver in use.

The locking scheme employed
by the BDE is typically determined
by the driver and also depends on
whether cached updates are being
used. For example, when using the
Paradox (STANDARD) driver the
BDE employs pessimistic locking
(ie records are locked as editing
begins). Using cached updates
modifies the scheme slightly by
not releasing the record lock after
the edit is completed. When using
the InterBase driver (or any SQL
Links driver) the BDE employs
optimistic locking (ie a record lock
is placed only when the update is
finally attempted). In ADO the

programmer has some choice of
which locking scheme is used.
Table 4 shows the lock types
supported by ADO.

Essentially the choices are read-
only (in which case there is no
locking scheme), pessimistic, opti-
mistic and batch optimistic. The
last is used for batch updates,
which are to ADO what cached
updates are to the BDE (I hope to
cover batch updates in a future
article). Just as the CursorLocation
property had a bearing on the
CursorType property, so it also has
a bearing on the lock type. Client-
side cursors only support read-
only and batch optimistic lock
types. If you specify a client-side
cursor and specify a lock type
other than one of these then the
lock type will be changed to batch
optimistic.

Transaction Isolation Levels
As the name implies, a transaction
isolation level specifies how iso-
lated a transaction is from changes
made by other users and vice
versa. The three transaction isola-
tion levels supported by the BDE
are well known by BDE database
programmers who use the SQL
Links drivers. However, it is also
well known that these transaction
isolation levels are a simplification
of the choices typically offered by
the underlying database engines
(as InterBase developers often
point out).

ADO is forced to make similar
generalisations but it is slightly

less restrictive than the BDE. Table
5 shows the transaction isolation
levels which are supported by
TADOConnection.

ADO often uses two constants to
mean the same thing and, as a
result, the Delphi enumerated type
also contains multiple names to
specify the same transaction isola-
tion level. The table also shows the
equivalent BDE transaction isola-
tion level. The default for ADO is
the same as for the BDE:
ilCursorStability. Just as for SQL
Links drivers for the BDE, OLE DB
providers can force a higher trans-
action isolation level if the
requested level is not supported.

Assuming that an OLE DB pro-
vider offers all transaction isola-
tion levels, your choice of which
level to use is determined by the
transaction anomalies which you
want to prevent and the price you
are prepared to pay to prevent
them. Transaction anomalies can
be categorised in three ways. First,
dirty reads occur when a
transaction reads data that has not
yet been committed. Second,
non-repeatable reads occur when a
transaction reads the same row
twice and the data is different each
time. Third, phantoms are rows
that match the criteria used to
compose a result set, but are not
initially visible.

Table 6 shows the transaction
isolation levels and the anomalies
which occur when they are used.

ltUnspecified The lock type has not been specified yet

ltReadOnly Read-only

ltPessimistic Pessimistic locking

ltOptimistic Optimistic locking

ltBatchOptimistic Used for batch updates

➤ Table 4



40 The Delphi Magazine Issue 52

Delphi
TIsolationLevel

Equivalent ADO
Constant

ADO
Constant
Value

Equivalent
TDatabase.TransIsolation Description

ilUnspecified adXactUnspecified -1 Server is using an isolation level
other than what was requested
and the specific isolation level
cannot be determined

ilChaos adXactChaos 16 Changes from more highly
isolated transactions cannot be
overwritten by the current
connection

ilReadUncommitted adXactReadUncommitted 256 tiDirtyRead Uncommitted changes in other
transactions are visible

ilBrowse adXactBrowse 256 tiDirtyRead Exactly the same as
ilReadUncommitted

ilCursorStability adXactCursorStability 4096 tiReadCommitted Changes from other transactions
only visible after being
committed (Default)

ilReadCommitted adXactReadCommitted 4096 tiReadCommitted Exactly the same as
ilCursorStability

ilRepeatableRead adXactRepeatableRead 65536 tiRepeatableRead Changes made in other
transactions not visible, but
requerying can retrieve new
recordsets

ilSerializable adXactSerializable 1048576 Transactions conducted in
isolation from other transactions

ilIsolated adXactIsolated 1048576 Exactly the same as ilSerializable

➤ Table 5

The ilSerializable transaction
isolation level is likely to be unfa-
miliar to many BDE programmers
so I will explain it here.

First, let’s recap on what
ilRepeatableRead does. When a
transaction starts it places read
locks on all rows that it reads. For
example, SELECT * FROM CUSTOMER
would place a read lock on every
row in the table. As INSERTs,
UPDATEs and DELETEs are performed
it holds write locks on the records
affected. Other transactions are
unable to modify any of the
records modified by the first trans-
action because the modified
records are still write locked. As a
result the first transaction avoids
non-repeatable reads because no
other transactions can modify the
data which it has modified. The
read locks and write locks are
released when the transaction
commits or rolls back.

The ilSerializable isolation
level does everything that
ilRepeatableReaddoes and, in addi-
tion, it does not allow any other
transactions to insert records that
would be included in the result set,

Isolation Level Dirty Reads Non-repeatable Reads Phantoms

ilReadUncommitted Yes Yes Yes

ilReadCommitted No Yes Yes

ilRepeatableRead No No Yes

ilSerializable No No No

nor does it allow other transac-
tions to modify any records such
that they either move into or out of
the original result set. Thus, if the
original result set was constructed
from SELECT * FROM CUSTOMER then
no one can add any records to the
table. If the original result set was
constructed from SELECT * FROM
CUSTOMER WHERE AREACODE=6 then
records with AREACODE=6 cannot be
inserted and no existing record can
be modified such that it is either
changed to AREACODE=6 when it
wasn’t before or that it was
AREACODE=6 before and then the
AREACODE was changed to be some-
thing other than 6. As a result it
avoids ‘phantom’ records.

Conclusion
The implementation of transaction
processing in ADO (and its support
in Delphi) is easily recognisable by
programmers already familiar with

➤ Table 6

transaction processing in the BDE.
It is fair to say that there are proba-
bly as many similarities between
the two pieces of middleware as
there are differences. Also, the
subject matter is as much like a
‘knowledge onion’ in ADO as it is in
the BDE: the problem may appear
simple at first but, as each layer is
stripped away, so another more
complex layer to be learnt is then
revealed. I hope I have helped you
avoid some of the tears involved in
working with this particular onion!

Guy Smith-Ferrier is Technical
Director of Enterprise Logistics
Ltd (www.EnterpriseL.com), a
training company specialising in
Delphi. He can be contacted at
gsmithferrier@EnterpriseL.com


	Getting Started
	Determining Support
	Nested Transactions
	Cursor Locations, Cursor Types And Lock Types
	Transaction Isolation Levels
	Conclusion

